
Experimental Evaluation of Euler Sums
David H. Bailey, Jonathan M. Borwein and Roland Girgensohn

June 24, 1994
Ref: Experimental Mathematics, vol. 3, no. 1 (1994), pg. 17–30

Abstract
In response to a letter from Goldbach, Euler considered sums of the form

∞∑
k=1

(
1 +

1

2m
+ · · · + 1

km

)
(k + 1)−n

for positive integers m and n. Euler was able to give explicit values for certain of these
sums in terms of the Riemann zeta function. In a recent companion paper, Euler’s results
were extended to a significantly larger class of sums of this type, including sums with
alternating signs.

This research was facilitated by numerical computations using an algorithm that can
determine, with high confidence, whether or not a particular numerical value can be ex-
pressed as a rational linear combination of several given constants. The present paper
presents the numerical techniques used in these computations and lists many of the exper-
imental results that have been obtained.

D. H. Bailey: NAS Applied Research Branch, NASA Ames Research Center,
Moffett Field, CA 94035-1000, USA; dbailey@nas.nasa.gov.

J. M. Borwein: Department of Mathematics and Statistics, Simon Fraser Uni-
versity, Burnaby, BC V5A 1S6, Canada; jborwein@cecm.sfu.ca. Research
supported by NSERC and the Shrum Endowment at Simon Fraser Univer-
sity.

R. Girgensohn: Department of Mathematics and Statistics, Simon Fraser Uni-
versity, Burnaby, BC V5A 1S6, Canada; girgen@cecm.sfu.ca. Research
supported by a DFG fellowship.

1

1. Introduction

In response to a letter from Goldbach, Euler considered sums of the form

∞∑
k=1

(
1 +

1

2m
+ · · · + 1

km

)
(k + 1)−n.

Euler was able to give explicit values for certain of these sums in terms of the Riemann

zeta function. For example, Euler found an explicit formula for the case m = 1, n ≥ 2.

Little has been done on this problem in the intervening years (see [5] for some references).

In April 1993, Enrico Au-Yeung, an undergraduate at the University of Waterloo,

brought to the attention of one of us the curious fact that

∞∑
k=1

(
1 +

1

2
+ · · · + 1

k

)2

k−2 = 4.59987 · · ·

≈ 17

4
ζ(4) =

17π4

360

based on a computation to 500,000 terms. This author’s reaction was to compute the value

of this constant to a higher level of precision in order to dispel this conjecture. Surprisingly,

a computation to 30 and later to 100 decimal digits still affirmed it. (Unknown to us at that

time, De Doelder had proved a related result in 1991 [11] from which the above identity

follows.)

Intrigued by this empirical result, we computed numerical values for several of these

and similar sums, which we have termed Euler sums. We then analyzed these values by

a technique we will present below that permits one to determine, with a high level of

confidence, whether a numerical value can be expressed as a rational linear combination of

several given constants. These efforts produced even more empirical evaluations, suggesting

broad patterns and general conjectures. Ultimately proofs were found for many of these

experimental results.

We will consider the following classes of Euler sums:

sh(m,n) =
∞∑

k=1

(
1 +

1

2
+ · · · + 1

k

)m

(k + 1)−n m ≥ 1, n ≥ 2,

sa(m,n) =
∞∑

k=1

(
1 − 1

2
+ · · · + (−1)k+1

k

)m

(k + 1)−n m ≥ 1, n ≥ 2,

2

ah(m,n) =
∞∑

k=1

(
1 +

1

2
+ · · · + 1

k

)m

(−1)k+1(k + 1)−n m ≥ 1, n ≥ 1,

aa(m,n) =
∞∑

k=1

(
1 − 1

2
+ · · · + (−1)k+1

k

)m

(−1)k+1(k + 1)−n m ≥ 1, n ≥ 1,

σh(m,n) =
∞∑

k=1

(
1 +

1

2m
+ · · · + 1

km

)
(k + 1)−n m ≥ 1, n ≥ 2,

σa(m,n) =
∞∑

k=1

(
1 − 1

2m
+ · · · + (−1)k+1

km

)
(k + 1)−n m ≥ 1, n ≥ 2,

αh(m,n) =
∞∑

k=1

(
1 +

1

2m
+ · · · + 1

km

)
(−1)k+1(k + 1)−n m ≥ 1, n ≥ 1,

αa(m,n) =
∞∑

k=1

(
1 − 1

2m
+ · · · + (−1)k+1

km

)
(−1)k+1(k + 1)−n m ≥ 1, n ≥ 1.

Explicit evaluations of some of the constants in these classes are presented with proofs

in [6] and [7]. Table 1 contains a summary of these results (these include some facts

already known to Euler). Here ζ(t) =
∑∞

k=1 k−t is the Riemann zeta function. Results for

alternating sums are also given in [7].

Variants of the sums defined above can be evaluated by using these results. Note for

example that for all m ≥ 1, n ≥ 2 one can write

∞∑
k=1

(
1 +

1

2m
+ · · · + 1

km

)
k−n =

∞∑
k=0

(
1 +

1

2m
+ · · · + 1

(k + 1)m

)
(k + 1)−n

=
∞∑

k=1

(
1 +

1

2m
+ · · · + 1

km

)
(k + 1)−n +

∞∑
k=1

k−m−n

= σh(m,n) + ζ(m + n).

Similarly, let hk = 1 + 1/2 + · · ·+ 1/k, and define h0 = 0. Then for all n ≥ 2 one can write

∞∑
k=1

(
1 +

1

2
+ · · · + 1

k

)2

k−n =
∞∑

k=0

h2
k+1(k + 1)−n

=
∞∑

k=0

(
hk +

1

k + 1

)2

(k + 1)−n

=
∞∑

k=0

h2
k(k + 1)−n + 2

∞∑
k=0

hk(k + 1)−n−1

+
∞∑

k=0

(k + 1)−n−2

= sh(2, n) + 2sh(1, n + 1) + ζ(n + 2).

3

sh(2, 2) =
3

2
ζ(4) +

1

2
ζ2(2) =

11π4

360
,

sh(2, 4) =
2

3
ζ(6) − 1

3
ζ(2)ζ(4) +

1

3
ζ3(2) − ζ2(3) =

37π6

22680
− ζ2(3),

σh(2, 2) =
1

2
ζ2(2) − 1

2
ζ(4) =

π4

120
,

σh(2, 4) = −6ζ(6) +
8

3
ζ(2)ζ(4) + ζ2(3) = ζ2(3) − 4π6

2835
,

sh(1, n) = σh(1, n) =
nζ(n + 1)

2
− 1

2

n−2∑
k=1

ζ(n − k)ζ(k + 1),

sh(2, n) =
n(n + 1)

3
ζ(n + 2) + ζ(2)ζ(n) − n

2

n−2∑
k=0

ζ(n − k)ζ(k + 2)

+
1

3

n−2∑
k=2

ζ(n − k)
k−1∑
j=1

ζ(j + 1)ζ(k + 1 − j) + σh(2, n),

σh(2, 2n − 1) = −2n2 + n + 1

2
ζ(2n + 1) + ζ(2)ζ(2n − 1)

+
n−1∑
k=1

2kζ(2k + 1)ζ(2n − 2k),

sh(2, 2n − 1) =
2n2 − 7n − 3

6
ζ(2n + 1) + ζ(2)ζ(2n − 1)

− 1

2

n−2∑
k=1

(2k − 1)ζ(2n − 1 − 2k)ζ(2k + 2)

+
1

3

n−2∑
k=1

ζ(2k + 1)
n−2−k∑

j=1

ζ(2j + 1)ζ(2n − 1 − 2k − 2j),

for m + n odd:

σh(m,n) =
1

2

[(
m + n

m

)
− 1

]
ζ(m + n) + ζ(m)ζ(n)

−
m+n∑
j=1

[(
2j − 2

m − 1

)
+

(
2j − 2

n − 1

)]
ζ(2j − 1)ζ(m + n − 2j + 1)

if m is odd,

σh(m,n) = −1

2

[(
m + n

m

)
+ 1

]
ζ(m + n)

+
m+n∑
j=1

[(
2j − 2

m − 1

)
+

(
2j − 2

n − 1

)]
ζ(2j − 1)ζ(m + n − 2j + 1)

if m is even.

Table 1: Explicit Evaluations of Euler Sums

4

2. Numerical Techniques

It is not easy to näıvely compute numerical values of any of these Euler sums to high

precision. Straightforward evaluation using the defining formulas, to some upper limit

feasible on present-day computers, yields only about eight digits accuracy. Because the

integer relation detection algorithm described in section 4 requires much higher precision

to obtain reliable results, more advanced techniques must be employed.

We present here a method that is reasonably straightforward and generally applicable

to all Euler sums discussed in this paper. This scheme involves the compound application

of the Euler-Maclaurin summation formula (see [1, p. 806], [2, p. 289] and [16, p. 108]),

which can be stated as follows. Suppose f(t) has at least 2p + 2 continuous derivatives on

(a, b). Let D be the differentiation operator, let Bk denote the k-th Bernoulli number, and

let Bk(·) denote the k-th Bernoulli polynomial. Then

b∑
j=a

f(j) =
∫ b

a
f(t) dt +

1

2
[f(a) + f(b)]

+
p∑

j=1

B2j

(2j)!
[D2j−1f(b) − D2j−1f(a)] + Rp(a, b). (1)

where the remainder Rp(a, b) is given [2, p. 289] by

Rp(a, b) =
−1

(2p + 2)!

∫ b

a
B2p+2(t − [t])D2p+2f(t) dt.

We will start by demonstrating a method for computing sh(m,n). Let h(k) =
∑k

j=1 1/j

and f(t) = 1/t. By the Euler-Maclaurin summation formula,

h(k) = ln k +
1

2
+

1

2k
+

p∑
j=1

B2j

2jk2j
−

p∑
j=1

B2j

2j
+ Rp(1, k).

Since |B2k(t)| ≤ |B2k| for all k and for |t| ≤ 1 (see [1, p. 805]), it follows that the

remainder Rp(1, k) has a well-defined limit Rp(1,∞) as k approaches infinity. Now since

Euler’s constant γ = limk→∞[h(k) − ln k], it follows that

h(k) = γ + ln k +
1

2k
+

p∑
j=1

B2j

2jk2j
− Rp(k,∞). (2)

5

We have

|Rp(k,∞)| =
∣∣∣∣
∫ ∞

k
B2p+2(t − [t])t−2p−3 dt

∣∣∣∣
≤ |B2p+2|

(2p + 2)k2p+2
,

so that the remainder in (2) is no greater than the first term omitted in the summation.

We can then write, for example,

h(k) = γ + ln k +
1

2k
− 1

12k2
+

1

120k4
− 1

252k6
+

1

240k8

− 1

132k10
+

691

32760k12
− 1

12k14
+

3617

8160k16
+ O(k−18). (3)

We will use h̄(k) to denote this particular approximation (i.e., (3) without the error

term). It is an unfortunate fact that h̄ cannot be extended to a valid infinite series. The

difficulty is that for any fixed k, the Bernoulli coefficients eventually become very large

and the series diverges. On the other hand, it is clear that for any fixed number of terms,

approximations such as h̄ become ever more accurate as k increases to infinity.

Now let us consider the sum

sh(m,n) =
∞∑

k=1

(
1 +

1

2
+ · · · + 1

k

)m

(k + 1)−n.

Let c be a large integer, and let g(t) = h̄m(t)(t + 1)−n. Applying the Euler-Maclaurin

summation formula (1) again, we can write

sh(m,n) =
c∑

k=1

(
1 +

1

2
+ · · · + 1

k

)m

(k + 1)−n

+
∞∑

k=c+1

(
1 +

1

2
+ · · · + 1

k

)m

(k + 1)−n

=
c∑

k=1

hm(k)(k + 1)−n +
∫ ∞

c+1
g(t) dt +

1

2
g(c + 1)

−
9∑

k=1

B2k

(2k)!
D2k−1g(c + 1) + O(c−18). (4)

This formula suggests the following computational scheme. First, explicitly evaluate

the sum
∑c

k=1 hm(k)(k + 1)−n for c = 108, using a numeric working precision of 150 digits.

6

Secondly, perform the symbolic integration and differentiation steps indicated in formula

(4). Finally, evaluate the resulting expression, again using a working precision of 150 digits.

The final result should be equal to sh(m,n) to approximately 135 significant digits.

The difficulty and cost of performing the symbolic integration and differentiation op-

erations indicated in (4) can be greatly reduced by approximating g(t) as follows: first,

expand h̄m(t), the numerator of g(t), into a sum of individual terms; next, write (1 + t)−n

as t−n(1 + 1/t)−n; next, expand (1 + 1/t)−n using the binomial theorem to 18 terms; next,

multiply together the resulting numerator and denominator expressions; finally, omit all

terms whose exponent of 1/t is greater than 18. The result is a linear sum of terms of the

form t−p lnq(t) for modest-sized integers p and q.

Of course, even more accurate results can be obtained by utilizing more terms in the

Euler-Maclaurin expansions, although the cost of the required symbolic manipulation corre-

spondingly increases. Determining the optimal balance between the numeric and symbolic

calculations, and determining the number of Euler-Maclaurin terms (at both steps) re-

quired for various levels of precision, are interesting problems in their own right. However,

we found that only minor tuning of the above scheme, based on simple timing and accuracy

experiments, sufficed for the cases we studied.

For Euler sums with alternating signs, the scheme is a bit more complicated. Consider

the sum sa(m,n). In this case, we can write

sa(m,n) =
∞∑

k=1

(
1 − 1

2
+ · · · + (−1)k+1

k

)m

(k + 1)−n

=
∞∑

k=1

 k∑

j=1

1

2j − 1
−

k−1∑
j=1

1

2j

m
1

(2k)n

+
∞∑

k=1

 k∑

j=1

1

2j − 1
−

k∑
j=1

1

2j

m
1

(2k + 1)n

=
∞∑

k=1

(
rk +

1

2k

)m 1

(2k)n
+

∞∑
k=1

rm
k

(2k + 1)n

where

rk =
k∑

j=1

1

2j − 1
−

k∑
j=1

1

2j
=

k∑
j=1

1

2j(2j − 1)
.

7

The Euler-Maclaurin formula (1) can then be applied first to obtain a highly accurate

approximation to rk, and then to evaluate the two remaining outer summations.

Another approach for alternating Euler sums is to apply the Boole summation formula

(see [9]), which deals specifically with alternating sums.

3. Software and Hardware Technology

We have performed many computations of this type. The integration and differentiation

operations required in (4) can be handled using a symbolic mathematics package, such as

Maple [10] or Mathematica [20]. The explicit summation of the first c terms, as indicated

in (4), could be performed by utilizing the multiple precision facility in the Maple or

Mathematica packages. However, it was found that the MPFUN multiple precision package

and translator developed by one of us [3] was significantly faster for this purpose.

Whatever software is used, this explicit summation is a very expensive operation. For

example, the evaluation of sh(3, 4) to 108 terms, using the MPFUN package with 150-

digit precision arithmetic, requires 20 hours on a “Crimson” workstation manufactured by

Silicon Graphics, Inc. Thus while such runs can be made, clearly this is pressing the limits

of current workstation technology.

The MPFUN multiple precision software is available on vector supercomputers, such

as those manufactured by Cray Research, Inc. However, for the modest precision levels

typical of these problems (i.e., 100 to 200 decimal digits), the resulting vector lengths are

too short to yield the high performance these systems are capable of. On the other hand,

multiple precision calculations of this type are well suited for RISC processors, because

they are well behaved in cache memory systems.

These considerations suggest that, in principle, a highly parallel computer based on

RISC processors could be effectively employed for computing these explicit sums. How-

ever, at first glance these computations appear not to possess any significant opportunity

for parallelism, since evidently both the inner and outer sums must be simultaneously

accumulated.

Fortunately, it is possible to compute these explicit sums efficiently on parallel comput-

8

ers, as in the following example of the sh(m,n) constants:

Algorithm 1. (Parallel Summation) Let P be the number of processor nodes of the

parallel system, and let p be the processor node index, 1 ≤ p ≤ P . Assume that the number

of terms to be accumulated is N = KP . Let r denote a K +1-long multiple precision array

separately available in each node. Let t and q denote P -long multiple precision arrays

stored such that node p holds tp and qp. Initialize by setting i := 0, Q := 0 and S := 0.

Then perform the following steps on each node, using multiple precision arithmetic where

appropriate:

1. Set i := i + 1 and tp := 0.

2. For j := 1 to K: set rj := 1/[j + (p− 1)K + (i− 1)N] and tp := tp + rj; endfor. Set

rK+1 := 1/[1 + pK + (i − 1)N].

3. On node 1, set q1 := Q and t1 := t1 + Q; on other nodes p set qp := tp−1 and

tp := tp + tp−1. Each node p > 1 must receive the value of tp−1 from node p− 1 before

updating qp or tp.

4. Set Q := tP (from node P) and tp := 0.

5. For j := 1 to K: set qp := qp + rj and tp := tp + qm
p rn

j+1; endfor.

6. Compute the global sum T of all tp, and set S := S + T .

Suppose one wishes to accumulate approximately 108 terms, as in many of our com-

putations. One complication is that when N = 108, the amount of memory required for

the r array on each node might not be available on some highly parallel computers. This

difficulty can be remedied by setting N = 106 and then iterating this procedure 100 times.

Upon completion of all iterations, S is the required explicit sum to 108 terms.

This algorithm has been implemented on an Intel Paragon parallel computer at NASA

Ames Research Center, using the MPFUN multiple precision software. Using 128 nodes

and 150-digit precision arithmetic, with m = 3, n = 4 and N = 220, performing 100

9

iterations of Algorithm 1 (i.e., c = 100N = 104, 857, 600) requires only 971 seconds, or

9.7 seconds per iteration. This is 110 times faster than the per-iteration timing on a

single node of the Paragon, using a straightforward serial algorithm, and 40 times faster

than on one processor of a Cray Y-MP, using the MPFUN package tuned for the Cray.

It may be possible, by reorganizing the computation, to achieve higher performance on

the Cray system; thus caution should be exercised when interpreting this last figure. But

these results nonetheless confirm that Algorithm 1, running on a highly parallel RISC

supercomputer, is a highly efficient and cost-effective solution to the problem of computing

the explicit sums required in (4).

4. Integer Relation Detection Algorithms

Let x = (x1, x2, · · · , xn) be a vector of real numbers. x is said to possess an integer

relation if there exist integers ai not all zero such that a1x1 + a2x2 + · · · + anxn = 0.

By an integer relation algorithm, we mean an algorithm that is guaranteed (provided the

computer implementation has sufficient numeric precision) to recover the vector of integers

ai, if it exists, or to produce bounds within which no integer relation can exist.

The problem of finding integer relations among a set of real numbers was first studied by

Euclid, who gave an iterative algorithm which, when applied to two real numbers, either

terminates, yielding an exact relation, or produces an infinite sequence of approximate

relations. The generalization of this problem for n > 2 has been attempted by Euler,

Jacobi, Poincare, Minkowski, Perron, Brun, Bernstein, among others. However, none of

their algorithms has been proven to work for n > 3, and numerous counterexamples have

been found.

The first integer relation algorithm with the desired properties mentioned above was

discovered by Ferguson and Forcade in 1977 [13]. In the intervening years a number of

other integer relation algorithms have been discovered, including a variant of the original

algorithm [14], the “LLL” algorithm [18], the “HJLS” algorithm [15] (which is based on

the LLL algorithm), and the “PSOS” [4] algorithm.

Recently a new algorithm, known as the “PSLQ” algorithm, was developed by Ferguson

10

and one of us. It appears to combine some of the best features separately possessed by

previous algorithms, including fast run times, numerical stability, numerical efficiency (i.e.

successfully recovering a relation when the input is known to only limited precision), and a

guaranteed completion in a polynomially bounded number of iterations. We present here

a simplified but equivalent version of PSLQ. The proof of the PSLQ algorithm and notes

for efficient implementations are given in [12].

Algorithm 2. (PSLQ) Let x be the n-long input real vector, and let nint denote the

nearest integer function (for exact half-integer values, define nint to be the integer with

greater absolute value). Let γ :=
√

4/3. Then perform the following:

Initialize:

1. Set the n × n matrices A and B to the identity.

2. For k := 1 to n: compute sk :=
√∑n

j=k x2
j ; endfor. Set t = 1/s1. For k := 1 to n:

yk := txk; sk := tsk; endfor.

3. Compute the n × (n − 1) matrix H as follows:

For i := 1 to n: for j := i + 1 to n − 1: set Hij := 0; endfor; if i ≤ n − 1 then set

Hii := si+1/si; for j := 1 to i − 1: set Hij := −yiyj/(sjsj+1); endfor; endfor.

4. Perform full reduction on H, simultaneously updating y, A and B:

For i := 2 to n: for j := i − 1 to 1 step −1: t := nint(Hij/Hjj); yj := yj + tyi; for

k := 1 to j: Hik := Hik − tHjk; endfor; for k := 1 to n: Aik := Aik − tAjk, Bkj :=

Bkj + tBki; endfor; endfor; endfor.

Repeat until precision is exhausted or a relation has been detected:

1. Select m such that γi|Hii| is maximal when i = m.

2. Perform block reduction on H, simultaneously updating y, A and B:

11

For i := m+1 to n: for j := min(i−1,m+1) to 1 step −1: t := nint(Hij/Hjj); yj :=

yj + tyi; for k := 1 to j: Hik := Hik − tHjk; ; endfor; for k := 1 to n: Aik :=

Aik − tAjk, Bkj := Bkj + tBki; endfor; endfor; endfor.

3. Exchange entries m and m+1 of y, corresponding rows of A and H, and corresponding

columns of B.

4. If m ≤ n − 2 then update H as follows:

Set t0 :=
√

H2
mm + H2

m,m+1, t1 := Hmm/t0 and t2 := Hm,m+1/t0. Then for i := m to

n: t3 := Him; t4 := Hi,m+1; Him := t1t3 + t2t4; Hi,m+1 := −t2t3 + t1t4; endfor.

5. Norm bound: Compute M := 1/ maxj |Hj|, where Hj denotes the j-th row of H.

Then there can exist no relation vector whose Euclidean norm is less than M .

6. Termination test: If the largest entry of A exceeds the level of numeric precision

used, then precision is exhausted. If the smallest entry of the y vector is less than

the detection threshold, a relation has been detected and is given in the corresponding

column of B.

With regards to the termination criteria in step 6, it sometimes happens that a relation

is missed at the point of potential detection because the y entry is not quite as small as

the detection threshold being used (the threshold is typically set to the “epsilon” of the

precision level). When this happens, however, one will note that the ratio of the smallest

and largest y vector entries is suddenly very small, provided sufficient numeric precision is

being used.

The actual probability distribution of this ratio is not known for the PSLQ algorithm.

Most likely, however, the probability of this ratio being less than x is closely approximated

by a modest-sized constant times x. This is because the entries of the y vector are related

to the iterates of the continued fraction algorithm, which are distributed according to

the Kuzmin distribution (see [17], p. 346). In a normal computer run using the PSLQ

algorithm, prior to the detection of a relation, this ratio is seldom smaller than 10−2. Thus

12

if this ratio suddenly decreases to a very small value, such as 10−20, then almost certainly a

relation has been detected — one need only adjust the detection threshold for the algorithm

to terminate properly and output the relation. When detection does occur, this ratio may

be thought of as a “confidence level” of the detection.

In practice, the PSLQ algorithm is very effective in finding relations. For example, in

tests described in [12], relations of degree up to 82, with coefficients of size up to 1014, were

successfully detected. As a general rule, one can expect to detect a relation of degree n,

with coefficients of size 10m, provided that the input vector is known to somewhat greater

than mn digit precision, and provided that computations are performed using at least this

level of numeric precision.

5. Applications of the PSLQ Algorithm

There are a number of applications of integer relation detection algorithms in compu-

tational mathematics. One application is to analyze whether or not a given constant α,

whose value can be computed to high precision, is algebraic of some degree n or less. This

can be done by first computing the vector x = (1, α, α2, · · · , αn) to high precision and then

applying an integer relation algorithm to the vector x. If a relation is found, this integer

vector is precisely the set of coefficients of a polynomial satisfied by α. Even if a relation is

not found, the resulting bound means that α cannot possibly be the root of a polynomial

of degree n, with coefficients of size less than the established bound. Even negative results

of this sort are often of interest.

One of us has performed several computations of this type [4]. These computations

have established, for example, that if Euler’s constant γ satisfies an integer polynomial

of degree 50 or less, then the Euclidean norm of the coefficients must exceed 7 × 1017.

Computations of this sort have also been applied to study a certain conjecture regarding

the Riemann zeta function. It is well known [8] that

ζ(2) = 3
∞∑

k=1

1

k2
(

2k
k

)

13

ζ(3) =
5

2

∞∑
k=1

(−1)k−1

k3
(

2k
k

)

ζ(4) =
36

17

∞∑
k=1

1

k4
(

2k
k

)
These results have led some to suggest that

Z5 = ζ(5)/
∞∑

k=1

(−1)k−1

k5
(

2k
k

)
might also be a simple rational or algebraic number. Unfortunately, integer relation calcu-

lations [3] have established that if Z5 satisfies a polynomial of degree 25 or less, then the

Euclidean norm of the coefficients must exceed 2 × 1037.

The present application of Euler sum constants is well suited to analysis with integer

relation algorithms. We will present but one example of these computations. Consider

sa(2, 3) =
∞∑

k=1

(
1 − 1

2
+ · · · + (−1)k+1

k

)2

(k + 1)−3

= 0.156166933381176915881035909687988193685776709840 · · ·

Based on experience with other constants, we conjectured that this constant satisfies a

relation involving homogeneous combinations of ζ(2), ζ(3), ζ(4), ζ(5), ln(2), Li4(1/2) and

Li5(1/2), where Lin(x) =
∑∞

k=1 xkk−n denotes the polylogarithm function. The numerical

values of these constants, to 50 decimal digits, are as follows:

ζ(2) = 1.644934066848226436472415166646025189218949901206 · · ·
ζ(3) = 1.202056903159594285399738161511449990764986292340 · · ·
ζ(4) = 1.082323233711138191516003696541167902774750951918 · · ·
ζ(5) = 1.036927755143369926331365486457034168057080919501 · · ·
ln(2) = 0.693147180559945309417232121458176568075500134360 · · ·

Li4(1/2) = 0.517479061673899386330758161898862945622377475141 · · ·
Li5(1/2) = 0.508400579242268707459108849258589941319541125664 · · ·

The set of terms involving these constants with degree five (see section 7) are as follows:

Li5(1/2), Li4(1/2) ln(2), ln5(2), ζ(5), ζ(4) ln(2), ζ(3) ln2(2), ζ(2) ln3(2), ζ(2)ζ(3). When

14

sa(2, 3) is augmented with this set of terms, all computed to 135 decimal digits accuracy,

and the resulting 9-long vector is input to the PSLQ algorithm, it detects the relation

(480,−1920, 0, 16, 255, 660,−840, −160, 360) at iteration 390. Solving this relation for

sa(2, 3), we obtain the formula

sa(2, 3) = 4 Li5(1/2) − 1

30
ln5(2) − 17

32
ζ(5) − 11

8
ζ(4) ln(2) +

7

4
ζ(3) ln2(2)

+
1

3
ζ(2) ln3(2) − 3

4
ζ(2)ζ(3)

= 4 Li5(1/2) − 1

30
ln5(2) − 17

32
ζ(5) − 11

720
π4 ln(2) +

7

4
ζ(3) ln2(2)

+
1

18
π2 ln3(2) − 3

24
π2ζ(3)

(recall that ζ(2n) = (2π)2n|B2n|/ [2(2n)!]).

When the relation is detected, the minimum and maximum y vector entries are 1.60×
10−134 and 5.98 × 10−29, respectively. Thus the confidence level of this detection is on the

order of 10−105, indicating a very reliable detection.

Although 135-digit input values and 150-digit working precision were used by us when

this relation was originally detected, the fact that the maximum y-vector entry is only 10−29

at detection implies that such high levels of numeric precision are not required in this case.

Indeed, the above relation can be successfully detected using only the 50-digit input values

listed above and 50-digit working precision when performing the PSLQ algorithm.

6. Experimental Results

Many special cases of the proven results listed in Table 1 were first obtained using the

experimental method presented in sections 2 through 4. In addition, we have obtained a

number of experimental results for which formal proofs have not yet been found. Tables 2

and 3 list some of these experimental identities.

It should be emphasized that the results in Tables 2 and 3 are not established in any

rigorous mathematical sense by these calculations. However, in each case the “confidence

level” (see section 3) of these detections is less than 10−50, and in most cases is in the

neighborhood of 10−100. Note that Table 2, together with the results in [7], gives all

15

∗sh(3, 2) =
15

2
ζ(5) + ζ(2)ζ(3)

∗sh(3, 3) = −33

16
ζ(6) + 2ζ2(3)

sh(3, 4) =
119

16
ζ(7) − 33

4
ζ(3)ζ(4) + 2ζ(2)ζ(5)

sh(3, 6) =
197

24
ζ(9) − 33

4
ζ(4)ζ(5) − 37

8
ζ(3)ζ(6) + ζ3(3) + 3ζ(2)ζ(7)

sh(4, 2) =
859

24
ζ(6) + 3ζ2(3)

sh(4, 3) = −109

8
ζ(7) +

37

2
ζ(3)ζ(4) − 5ζ(2)ζ(5)

sh(4, 5) = −29

2
ζ(9) +

37

2
ζ(4)ζ(5) +

33

4
ζ(3)ζ(6) − 8

3
ζ3(3) − 7ζ(2)ζ(7)

sh(5, 2) =
1855

16
ζ(7) + 33ζ(3)ζ(4) +

57

2
ζ(2)ζ(5)

sh(5, 4) =
890

9
ζ(9) + 66ζ(4)ζ(5) − 4295

24
ζ(3)ζ(6) − 5ζ3(3) +

265

8
ζ(2)ζ(7)

sh(6, 3) = −3073

12
ζ(9) − 243ζ(4)ζ(5) +

2097

4
ζ(3)ζ(6) +

67

3
ζ3(3) − 651

8
ζ(2)ζ(7)

sh(7, 2) =
134701

36
ζ(9) +

15697

8
ζ(4)ζ(5) +

29555

24
ζ(3)ζ(6) + 56ζ3(3)

+
3287

4
ζ(2)ζ(7)

Table 2: Experimentally Detected Identities

sh(m,n) results for m + n ≤ 7 and m + n = 9, while Table 3 gives all results for the

alternating sums if m + n ≤ 5. Some of these identities can be proved by ad hoc methods,

based on [19], and we have indicated these with a asterisk.

In many other cases we were not able to obtain a formula for the Euler sum constant

explicitly in terms of values of the Riemann zeta, logarithm and polylogarithm functions,

but we were able to obtain relations involving two or more Euler sum constants of the same

degree (where by “degree” we mean m+n, where m and n are the indices of the constant).

Some of these relations are shown in Table 4. This is not a complete list; we have obtained

numerous other relations of this type. The “confidence level” of each of these relations is

16

∗sa(2, 2) = 6Li4(1/2) +
1

4
ln4(2) − 29

8
ζ(4) +

3

2
ζ(2) ln2(2)

∗sa(2, 3) = 4Li5(1/2) − 1

30
ln5(2) − 17

32
ζ(5) − 11

8
ζ(4) ln(2) +

7

4
ζ(3) ln2(2)

+
1

3
ζ(2) ln3(2) − 3

4
ζ(2)ζ(3)

∗sa(3, 2) = −24Li5(1/2) + 6 ln(2)Li4(1/2) +
9

20
ln5(2) +

659

32
ζ(5) − 285

16
ζ(4) ln(2)

+
5

2
ζ(2) ln3(2) +

1

2
ζ(2)ζ(3)

∗ah(2, 2) = −2Li4(1/2) − 1

12
ln4(2) +

99

48
ζ(4) − 7

4
ζ(3) ln(2) +

1

2
ζ(2) ln2(2)

∗ah(2, 3) = −4Li5(1/2) − 4 ln(2)Li4(1/2) − 2

15
ln5(2) +

107

32
ζ(5) − 7

4
ζ(3) ln2(2)

+
2

3
ζ(2) ln3(2) +

3

8
ζ(2)ζ(3)

∗ah(3, 2) = 6Li5(1/2) + 6 ln(2)Li4(1/2) +
1

5
ln5(2) − 33

8
ζ(5) +

21

8
ζ(3) ln2(2)

− ζ(2) ln3(2) − 15

16
ζ(2)ζ(3)

∗aa(2, 2) = −4Li4(1/2) − 1

6
ln4(2) +

37

16
ζ(4) +

7

4
ζ(3) ln(2) − 2ζ(2) ln2(2)

∗aa(2, 3) = 4 ln(2)Li4(1/2) +
1

6
ln5(2) − 79

32
ζ(5) +

11

8
ζ(4) ln(2) − 1ζ(2) ln3(2)

+
3

8
ζ(2)ζ(3)

∗aa(3, 2) = 30Li5(1/2) − 1

4
ln5(2) − 1813

64
ζ(5) +

285

16
ζ(4) ln(2) +

21

8
ζ(3) ln2(2)

− 7

2
ζ(2) ln3(2) +

3

4
ζ(2)ζ(3)

Table 3: Experimentally Detected Identities, Cont.

17

smaller than 10−25. The uniqueness of each of these relations was checked by repeating the

run with one fewer constant input to PSLQ (there should be no relation detected when

this is done).

In still other cases we were not successful in finding relations, but we were able to obtain

bound results from the PSLQ program that exclude a large class of potential relations

among the list of candidate terms. These results do not conclusively prove that there is no

such relation, only that if one exists, the Euclidean norm of its coefficients must be larger

than a certain bound (assuming, of course, that the algorithm is correctly implemented

and the computer works flawlessly). Some of these “negative” results are listed in Tables 5

and 6. In this table, “Norm Bound” is the minimum Euclidean norm of any possible

integer relation involving the listed constants. To save space in the table the following

abbreviations are used:

H11 = {ζ(11), ζ(5)ζ(6), ζ(4)ζ(7), ζ(3)ζ(8), ζ2(3)ζ(5), ζ(2)ζ(9), ζ(2)ζ3(3)},
H12 = {ζ(12), ζ(5)ζ(7), ζ(3)ζ(9), ζ(3)ζ(4)ζ(5), ζ2(3)ζ(6), ζ4(3), ζ(2)ζ2(5),

ζ(2)ζ(3)ζ(7)},
A6 = {Li6(1/2), ln(2)Li5(1/2), ln2(2)Li4(1/2), ln6(2), ζ(6), ζ(5) ln(2),

ζ(4) ln2(2), ζ(3) ln3(2), ζ2(3), ζ(2) ln4(2), ζ(2)ζ(3) ln(2)},
A7 = {Li7(1/2), ln(2)Li6(1/2), ln2(2)Li5(1/2), ln3(2)Li4(1/2), ln7(2), ζ(7),

ζ(6) ln(2), ζ(5) ln2(2), ζ(4) ln3(2), ζ(3)Li4(1/2), ζ(3) ln4(2), ζ(3)ζ(4),

ζ2(3) ln(2), ζ(2)Li5(1/2), ζ(2) ln5(2), ζ(2)ζ(5), ζ(2)ζ(3) ln2(2)}.

One interesting by-product of the bound results in Table 5 is that there are no modest-

sized integer relations among homogeneous products of ζ(k) with degree 12 or less (see

section 7), except of course the well-known relations when all k are even integers.

The bound result for ah(1, 5) in Table 6 confirms the observation in [7] that ah(1, n),

which equals αh(1, n), does not appear to possess an explicit evaluation when n is odd

and greater than three. The bound results for σh(2, 6) and σh(2, 8) in Table 6 confirm the

18

0 = 84549sh(1, 7) + 211468sh(2, 6) + 148902sh(3, 5) − 13360sh(4, 4) − 1978sh(5, 3)

0 = −127ζ(8) + 336ζ(3)ζ(5) − 120ζ(2)ζ2(3) − 24sh(2, 6) − 96sh(3, 5)

0 = −2718587sh(1, 8) − 164525664sh(2, 7) − 178042944sh(3, 6) − 88947862sh(4, 5)

+3863940sh(5, 4) + 672100sh(6, 3)

0 = −5138sh(1, 8) − 566656sh(2, 7) − 624016sh(3, 6) − 316988sh(4, 5) + 6480sh(5, 4)

+33605ζ(3)ζ(6)

0 = −14269408sh(1, 9) + 2578470sh(2, 8) + 2815376sh(3, 7) + 5814550sh(4, 6)

+6238884sh(5, 5) + 3938912sh(6, 4) + 1122784sh(7, 3) − 1860sh(8, 2)

+63164285ζ(10)

0 = 321ζ(10) − 440ζ2(5) − 720ζ(3)ζ(7) − 80ζ2(3)ζ(4) + 560ζ(2)ζ(3)ζ(5)

−40sh(2, 8) + 160sh(3, 7)

0 = −1691755503sh(1, 10) − 3172589688sh(2, 9) + 837511504sh(3, 8)

−7302717576sh(4, 7) − 13958660016sh(5, 6) − 12910466064sh(6, 5)

−7099332912sh(7, 4) − 1773212688sh(8, 3) + 658360sh(9, 2)

+53491434679ζ(11) − 21868248971ζ(2)ζ(9)

0 = −589ζ(11) + 322ζ(5)ζ(6) + 756ζ(4)ζ(7) + 254ζ(3)ζ(8) − 336ζ2(3)ζ(5)

−368ζ(2)ζ(9) + 80ζ(2)ζ3(3) − 16sh(3, 8) − 48sh(4, 7)

0 = 70663ζ(12) − 165840ζ(5)ζ(7) − 121616ζ(3)ζ(9) − 33168ζ2(3)ζ(6) + 5528ζ4(3)

+49752ζ(2)ζ2(5) + 99504ζ(2)ζ(3)ζ(7) − 16584sh(2, 10) + 22112sh(3, 9)

0 = 1152sa(2, 4) + 640sa(3, 3) − 7680 ln(2)Li5(1/2) + 64 ln6(2) − 1881ζ(6)

+7440ζ(5) ln(2) − 1680ζ(4) ln2(2) − 1120ζ(3) ln3(2) + 864ζ(3)ζ(3)

−640ζ(2) ln4(2) − 432ζ(2)ζ(3) ln(2)

Table 4: Experimentally Detected Relations

19

observation in [7] that σh(2, n) does not appear to possess an explicit evaluation for n even

and greater than four.

The numerical values of the various Euler sum constants, which were used to obtain the

results listed in Tables 2–6, were computed as described in sections 2 and 3. The explicit

sum in formula (4) was computed on the Intel Paragon parallel computer system, using

100 iterations of Algorithm 1 (or its equivalent for alternating sums), i.e. N = 220, c =

100N = 104, 857, 600. The symbolic operations indicated in (4) were performed using

the Maple package. The final numerical values were checked by comparing them with the

values obtained from using 99 iterations of Algorithm 1 (or equivalent), i.e. c = 99N =

103, 809, 024.

7. Conjectures

It is not known whether closed-form evaluations of the type listed in Tables 2 and 3

exist for all of the various classes of Euler sums studied in this paper. It is possible that

such formulas always exist and could be uncovered by the techniques described in this

paper, if one could only deduce the form of the missing terms. We present this as an open

question for further research.

One principle we have observed in this work is that in every case where we have obtained

a relation, this relation has always involved homogeneous terms. By homogeneous we mean

that the degree of each term involved in the relation is the same integer value, namely m+n,

where m and n are the indices in the definition of the constant. For these purposes, the

degree of ζ(k) is taken to be k, as is the degree of Lik(1/2), while that of ln(2) is taken

as one. Although we believe this principle may hold in general, we have no idea how to

prove it. We therefore present it as a conjecture. However, since it is important to limit

the number of constants input to Algorithm 2 (PSLQ), in order to enhance the possibility

of detecting a relation, we have often used this principle to determine the form of the

candidate constants.

The modular properties of the sums σh(m,n) are being investigated by D. Zagier (as he

informed us in a private communication). His work provides an alternate, abstract proof

20

Set of Constants Norm Bound
sh(2, 6), ζ(8), ζ(3)ζ(5), ζ(2)ζ2(3) 7.06 × 1041

sh(2, 8), ζ(10), ζ2(5), ζ(3)ζ(7), ζ2(3)ζ(4), ζ(2)ζ(3)ζ(5) 1.28 × 1026

sh(2, 10) plus H12 1.43 × 1015

sh(3, 5), ζ(8), ζ(3)ζ(5), ζ(2)ζ2(3) 4.31 × 1041

sh(3, 7), ζ(10), ζ2(5), ζ(3)ζ(7), ζ2(3)ζ(4), ζ(2)ζ(3)ζ(5) 3.03 × 1026

sh(3, 8) plus H11 2.01 × 1017

sh(3, 9) plus H12 8.21 × 1014

sh(4, 4), ζ(8), ζ(3)ζ(5), ζ(2)ζ2(3) 1.63 × 1040

sh(4, 6), ζ(10), ζ2(5), ζ(3)ζ(7), ζ2(3)ζ(4), ζ(2)ζ(3)ζ(5) 3.33 × 1024

sh(4, 7) plus H11 1.89 × 1017

sh(4, 8) plus H12 1.06 × 1015

sh(1, 9), sh(2, 8), sh(3, 7), sh(4, 6), sh(5, 5), sh(6, 4), sh(7, 3),
sh(8, 2)

2.31 × 1016

sh(1, 10), sh(2, 9), sh(3, 8), sh(4, 7), sh(5, 6), sh(6, 5), sh(7, 4),
sh(8, 3), sh(9, 2)

1.05 × 1015

sh(1, 10), sh(2, 9), sh(3, 8), sh(4, 7), sh(5, 6), sh(6, 5), sh(7, 4),
sh(8, 3), sh(9, 2), ζ(11)

6.54 × 1013

sh(1, 11), sh(2, 10), sh(3, 9), sh(4, 8), sh(5, 7), sh(6, 6), sh(7, 5),
sh(8, 4), sh(9, 3), sh(10, 2)

6.77 × 1013

sh(1, 11), sh(2, 10), sh(3, 9), sh(4, 8), sh(5, 7), sh(6, 6), sh(7, 5),
sh(8, 4), sh(9, 3), sh(10, 2), ζ(12)

2.67 × 1011

Table 5: Relation Exclusion Bounds

21

Set of Constants Norm Bound
sa(2, 4) plus A6 6.08 × 1010

sa(2, 5) plus A7 2.63 × 106

sa(3, 3) plus A6 5.95 × 1010

sa(3, 4) plus A7 4.73 × 106

sa(2, 5), sa(3, 4), sa(4, 3), sa(5, 2) plus A7 3.16 × 105

ah(1, 5) plus A6 7.29 × 1010

σh(2, 6), ζ(8), ζ(3)ζ(5), ζ(2)ζ2(3) 6.81 × 1041

σh(3, 5), ζ(8), ζ(3)ζ(5), ζ(2)ζ2(3) 6.26 × 1041

σh(2, 8), ζ(10), ζ2(5), ζ(3)ζ(7), ζ2(3)ζ(4), ζ(2)ζ(3)ζ(5) 3.92 × 1026

σh(3, 7), ζ(10), ζ2(5), ζ(3)ζ(7), ζ2(3)ζ(4), ζ(2)ζ(3)ζ(5) 2.78 × 1024

Table 6: Relation Exclusion Bounds, Cont.

that σh(m,n) evaluates in terms of zeta functions if m+n is odd. This corresponds to our

results and still leaves the case m + n even as an open problem.

Acknowledgments

The authors wish to thank David Borwein, Peter Borwein, Helaman R. P. Ferguson

and Paul O. Frederickson for valuable discussions during the course of this work.

22

References

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Pub-

lications, New York, 1972.

[2] K. E. Atkinson, An Introduction to Numerical Analysis, John Wiley, New York, 1989.

[3] D. H. Bailey, “Multiprecision Translation and Execution of Fortran Programs,” ACM

Transactions on Mathematical Software, to appear. This software and documentation

may be obtained by sending electronic mail to mp-request@nas.nasa.gov.

[4] D. H. Bailey and H. R. P. Ferguson, “Numerical Results on Relations Between Nu-

merical Constants Using a New Algorithm,” Mathematics of Computation, vol. 53

(October 1989), p. 649 - 656.

[5] B. C. Berndt, Ramanujan’s Notebook, Part I, Springer Verlag, New York, 1985.

[6] D. Borwein and J. M. Borwein, “On An Intriguing Integral and Some Series Related

to ζ(4),” to appear in Proceedings of the American Mathematical Society.

[7] D. Borwein, J. M. Borwein and R. Girgensohn, “Explicit Evaluation of Euler Sums,”

to appear in Proceedings of the Edinburgh Mathematical Society.

[8] J. M. Borwein and P. B. Borwein, Pi and the AGM, John Wiley, New York, 1987.

[9] J. M. Borwein, P. B. Borwein and K. Dilcher, “Pi, Euler Numbers and Asymptotic

Expansions,” American Mathematical Monthly, vol. 96, no. 8 (October 1989), p. 681-

687.

[10] B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan, S. M. Watt,

Maple V Language Reference Manual, Springer-Verlag, New York, 1991.

[11] P. J. De Doelder, “On Some Series Containing Ψ(x) − Ψ(y) and (Ψ(x) − Ψ(y))2 for

Certain Values of x and y,” Journal of Computational and Applied Mathematics, vol.

37 (1991), p. 125-141.

23

[12] H. R. P. Ferguson and D. H. Bailey, “A Polynomial Time, Numerically Stable Inte-

ger Relation Algorithm,” RNR Technical Report RNR-91-032, NASA Ames Research

Center, MS T045-1, Moffett Field, CA 94035-1000.

[13] H. R. P. Ferguson and R. W. Forcade, “Generalization of the Euclidean Algorithm

for Real Numbers to All Dimensions Higher Than Two,” Bulletin of the American

Mathematical Society, 1 (1979), p. 912 - 914.

[14] H. R. P. Ferguson, “A Non-Inductive GL(n,Z) Algorithm That Constructs Linear

Relations for n Z-Linearly Dependent Real Numbers,” Journal of Algorithms, Vol. 8

(1987), p. 131 - 145.

[15] J. Hastad, B. Just, J. C. Lagarias and C. P. Schnorr, “Polynomial Time Algorithms

for Finding Integer Relations Among Real Numbers,” SIAM Journal on Computing,

vol. 18 (1988), p. 859 - 881.

[16] D. E. Knuth, The Art of Computer Programming, vol. 1, Addison Wesley, Menlo

Park, 1973.

[17] D. E. Knuth, The Art of Computer Programming, vol. 2, Addison Wesley, Menlo

Park, 1981.

[18] A. K. Lenstra, H. W. Lenstra and L. Lovasz, “Factoring Polynomials with Rational

Coefficients”, Math. Annalen, vol. 261 (1982), p. 515 - 534.

[19] L. Lewin, Polylogarithms and Associated Functions, North Holland, New York, 1981.

[20] S. Wolfram, Mathematica: A System for Doing Mathematics by Computer, Addison

Wesley, Menlo Park, 1988.

24

